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ABSTRACT: Perfluorononanoic acid (PFNA), a nine carbon
backbone of perfluorinated acids (PFAAs), has wide
production applications and is found in environmental
matrices as a contaminant. To understand the adverse effects
of PFNA, adult male and female zebrafish were exposed to
differing PFNA dosages (0, 0.01, 0.1, and 1.0 mg/L) for 180
days using a flow-through exposure system. Results showed
body weight, body length, and hepatosomatic index (HSI)
decreased in both sexes. The HPLC-MS/MS analysis found
that PFNA concentrations were higher in male livers than in
female livers with increasing significance in a dose-dependent
manner. Total cholesterol levels increased in the livers of both
sexes, whereas triglyceride (TG) levels increased in males and
decreased in females. With the exception of FABP1b, the transcriptional expression levels of fatty acid binding proteins (FABPs)
were up-regulated in males and down-regulated in females. A similar trend between sexes occurred for peroxisome proliferator-
activated receptors (PPARs) and Ccaat-enhancer-binding proteins (C/EBPs), which may be the upstream regulatory elements of
FABPs. The results indicated that PFNA exposure caused opposite adverse effects on liver TG levels between the sexes in
zebrafish possibly due to the opposite expression of FABPs and its upstream genes.

■ INTRODUCTION
Perfluoroalkyl acids (PFAAs), a family of perfluorinated
chemicals consisting of high-energy carbon−fluorine (C−F)
bonds, have wide commercial and consumer applications due to
their unique physicochemical characteristics.1 This class of
compounds is highly persistent and bioaccumulative, resulting
in their broad distribution in the environment and in
organisms.2 Since 2000, the manufacturing practices for
PFAAs have changed considerably. Consequently, emissions
of PFAAs such as perfluorooctane sulfonate (PFOS) and
perfluorooctanoate (PFOA) have decreased.3 However, hun-
dreds of related chemicals, such as homologues with shorter or
longer alkyl chains, remain unregulated 4 and continue to be
released into the environment, especially in rapidly growing
industrial and economic regions of the world.5 The
concentration of perfluorononanoic acid (PFNA), a nine
carbon backbone of PFAAs, in aquatic environments and
organisms is higher than PFOA and PFOS.6 Detailed surveys
have shown that PFNA concentrations are greater than PFOA
in a variety of fish species.7−11 As a result, PFNA
concentrations in fish-eating marine mammals have increased
rapidly.12−15 Further, PFNA has been detected in human blood
and tissue throughout the world with mean concentrations
increasing every year, which likely relate to seafood being a
major source of perfluorinated compounds in humans due to
high dietary consumption.16

Subsequent research has found significant sex differences of
PFAAs concentrations in human serum. For example, adult
men have higher serum levels of PFOA and PFOS than women
in the United States,17 Japan,18 Germany,19 China,20 and
Australia.21 One study found that serum PFNA content was
higher in Australian women than men;21 however, little
information on sex differences in PFAAs accumulation is
available for teleost fish. Recent laboratory study on tilapia
(Oreochromis niloticus) found that the serum concentrations of
both PFOS and PFOA were approximately five to six times
higher in males than females, which may be attributable to the
shorter half-life and higher apparent clearance of female fish
compared to male.22 A significantly higher PFNA concentration
in male livers than female livers has also been detected in
rodents, which may originate from the dramatically different
elimination rates of PFNA between females and males.23 In
addition, toxicokinetic studies in rodents further indicated that
females have a much shorter blood or plasma elimination half-
life of PFNA than that of males.24

Bioconcentration of perfluorocarboxylic acids (PFCAs)
occurs notably in the liver, with protein binding as a possible
mode of bioconcentration, and it is consistent with the
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structural similarities between PFCA and hydrocarbon fatty
acids.25 Low-molecular-weight fatty acid binding proteins
(FABPs) are members of the intracellular lipid-binding protein
superfamily and are primarily involved in intracellular lipid
trafficking and the regulation of gene expression.26 So far, a
total of 11 different FABP isotypes have been identified in
zebrafish following the nomenclature proposed by Hertzel and
Bernlohr.27 Furthermore, several studies have demonstrated
that PFAAs, as fatty acid analogues, affect fatty acid and
cholesterol metabolism 28 via activation of the nuclear
peroxisome proliferator-activated receptor (PPAR) isoforms
and their target genes.29,30 Perfluorononanoic acid is an agonist
of the nuclear receptors PPARα and PPARγ, which have been
reported in rodents.31 However, the toxic effects mechanism of
PFNA in teleostean livers remains unclear. Although FABPs
have been extensively studied in mammals, including gene
expression at the tissue and cellular level,32 few studies have
investigated FABPs in nonmammalian species, especially the
large and evolutionary diverse teleost fish.
Those PFAAs with more than seven carbons in their

backbone cannot be easily metabolized and excreted from the
body; thus, longer carbon chain PFAAs such as PFNA have
higher accumulation propensity and are more physiologically
persistent than shorter chain PFAAs.24,33,34 The objective of
our study was to assess the accumulative levels and adverse
effects of PFNA in zebrafish at 0.01, 0.1, and 1.0 mg/L doses
after 180 days of flow-through exposure. In this article, we
report on the classic end points and the PFNA concentrations
in liver tissue between sexes. The lipid contents (triglycerides
and total cholesterol) in the liver were measured. Finally, we
compared the transcriptional profiles of FABPs genes and their
upstream regulatory elements peroxisome proliferator-activated
receptors (PPARs) and Ccaat-enhancer-binding proteins (C/
EBPs) to investigate gene expression trends between sexes
exposed to PFNA. This study will help evaluate the potential
long-term ecological risks of PFNA on aquatic organisms.

■ MATERIALS AND METHODS
Materials. The PFNA was obtained from Sigma Aldrich

(CAS number 375−95−1, 97% purity). Solvent-free stock
solutions of PFNA were prepared by dissolving crystals in water
with stirring. Three stock solutions of 30, 300, and 3000 mg/L
were used to span the desired range of target solutions in
exposure water.
Animals and Treatment. The 5-month-old zebrafish (n =

480) (wild-type, Tuebingen strain) were separated by sex and
randomly assigned to nominal concentrations of 0 (control),
0.01, 0.1, and 1.0 mg/L of PFNA for 180 days using a flow-
through exposure system (ISO7346−3) based on flow velocity
of 30 mL/min, and were fed twice a day with live brine shrimp.
The nominal low concentration of PFNA (0.01 mg/L) was
based on our determination of PFOA (less one carbon atom in
the backbone than PFNA) in environmental water sample
(9.250 μg/L) from the fluorine chemical industrial zone in
Jiangsu Province of China (unpublished). During 180 days of
exposure, all fish were held under the same photoperiodic
conditions of 16-h light:8-h dark, and a water temperature of
24−26 °C (pH 8.1−8.3). After exposure, all fish were ice-bath
anesthetized for sampling. The body weight and length of fish
were measured. Their livers were surgically removed after blood
was taken from the tail fin using a glass capillary; one part was
accurately weighed to analyze PFNA accumulation in the liver
and the remainder was immediately frozen in liquid nitrogen

and stored at −80 °C for RNA extraction. Hepatosomatic index
(HSI) was calculated according to the formula (organosomatic
index = organ weight ×100/body weight).

PFNA Accumulation in Liver Analysis. Concentrations of
PFNA in liver samples from males (n = 8) and females (n = 6)
of each group were quantified using high-performance liquid
chromatography-tandem mass spectrometry (HPLC-MS/MS).
Briefly, livers were extracted with 5 mL of acetonitrile (ACN)
in a 15 mL polypropylene (PP) tube, and all tubes were placed
on a mechanical shaker for 20 min followed by centrifugation at
3000g for 10 min. The top layers, which contained PFNA
(analytes and internal standards), were transferred into new PP
tubes. The extraction procedure was repeated and a final
solution of 10 mL of acetonitrile was combined and
concentrated to 0.5 mL under nitrogen gas at 40 °C. After
the addition of 0.5 mL MeOH, the final solution was diluted
into 10 mL Milli-Q water for SPE cleanup. All samples were
then extracted using an Oasis WAX cartridge (Oasis1 HLB; 150
mg, 6 cc; Waters). The cartridge was pre-equilibrated by the
addition of a sequence of 4 mL of 0.1% NH4OH in MeOH, 4
mL MeOH, and 4 mL water at a rate of 1 drop per second.
Samples (11 mL) were then passed through these cartridges at
a rate of 1 drop per second. After loading all samples, cartridges
were rinsed with 5 mL Milli-Q water and then washed with 4
mL of 25 mM acetate buffer solution (pH 4). Any water
remaining in the cartridges was removed by centrifugation at
3000 rpm for 2 min, and PFNA were eluted by 4 mL of 0.1%
NH4OH in MeOH and then concentrated to 1 mL under a
stream of nitrogen.
The instrumental chromatographic setup consisted of a P680

binary gradient pump, an UltiMate 3000 autosampler, and a
Chromeleon 6.70 chromatography workstation (Dionex, USA).
Mass spectra were collected using an API 3200 triple
quadrupole tandem mass spectrometer, fitted with an electro-
spray ionization source and operated in negative ionization
mode. Quantification using these transitions was performed
using Analyst 1.4.1 software. Chromatographic separations were
carried out on an Acclaim 120 C18 column (4.6 × 150 mm, 3
μm) (Dionex, USA), with a binary gradient. Methanol (A) and
50 mM ammonium acetate (NH4Ac) (B) were employed as
mobile phases. The flow rate was 1 mL/min and the injection
volume was 10 μL. The elution gradient was: 0 to 4 min, from
28 to 5% B linearly; 4 to 7 min, 5% B; 7 to 10 min, 28% B.
A calibration curve was prepared from a series of

concentrations (0, 10, 50, 100, 500, 1000, 5000, 20 000, and
50 000 pg/mL), and standard deviations were less than 20%.
Blanks and recoveries were assessed following the same
procedure as described above with each group of extractions.
The blanks were all below the limit of quantifications (LOQs).
Quality control is given in the Supporting Information. The
recovery of PFNA was 94%. All native standards were spiked
into samples and analyzed. The concentrations of PFNA in the
experimental samples were not corrected for their correspond-
ing recoveries.

Triglycerides (TG) and Total Cholesterol (TCHO)
Contents in Liver Analysis. For determination of TG and
TCHO content in the liver, 50 mg sections of liver from males
(n = 8) and females (n = 6) of each group were powdered
under liquid nitrogen and extracted for 16 h at 4 °C in 1 mL N-
heptane/dimethylcarbinol (2:3.5). After the solution was
centrifuged at 2000g for 10 min, the supernatant was obtained
and the contents determined using enzymatic kits according to
the manufacturer’s directions (Biosino, Beijing, China).
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Quantitative Real-Time PCR Assays. Total liver RNA
was extracted from frozen liver tissues using TRIZOL reagent
(Invitrogen Corp., Carlsbad, CA) according to manufacturer’s
instructions. The concentration was measured by absorbance at
260 nm using a UV1240 spectrophotometer (Shimadzu,
Japan). The purity was assessed by determining the A260/A280
ratio. The cDNA was then synthesized via reverse transcription
(RT) using an oligo-(dT)15 primer and the M-MuLV reverse
transcriptase (Promega, Madison, USA) in accordance with
manufacturer’s recommendations. Real-time PCR reactions
were performed with the Stratagene Mx3000P q-PCR system
(Stratagene, USA). The SYBR Green PCR Master Mix reagent
kits (Tiangen, Beijing, China) were used for quantification of
gene expression according to manufacturer’s instructions.
Zebrafish-specific primers were designed for the genes of
interest using Primer Premier 5.0 software (Supporting
Information). The housekeeping gene hypoxanthine guanine
phosphoribosyltransferase (HPRT) was used as an internal
control. The differences in efficiencies of amplification between
the target genes and HPRT were all less than 5%. The PCR
amplification procedure was as follows: 95 °C for 2 min
followed by 40 cycles of 94 °C for 10 s, 58 °C for 15 s, and 68
°C for 15 s. Quantification of the transcripts was performed
using the 2−ΔΔCt method.35

Statistical Analysis. Raw data were analyzed using SPSS
for Windows 13.0 Software (SPSS, Inc., Chicago, IL) and
presented as means with standard errors (mean ± SE).
Differences between the control and the treatment groups were
determined using a one-way analysis of variance (ANOVA)
followed by the Duncan’s multiple range test. A p-value of
<0.05 was considered statistically significant.

■ RESULTS AND DISCUSSION

PFNA Concentration in Liver. To evaluate PFNA
concentration level in fish, its content in tissues were quantified
by HPLC-MS/MS. As the collected serum amount was
insufficient (2−5 μL serum/per zebrafish) to analyze individual
distribution of PFNA in serum, we only detected PFNA
content in liver and eggs (collected in fresh water on the 180th
day). The results showed that PFNA concentration in males,
including the control group, tended to be considerably higher
than that in females, and elicited a significant increase with a
dose-dependent response (Figure 1). The differences between
sexes were statistically significant in the 0.01 and 1.0 mg/L
exposure groups (p < 0.05 and 0.01, respectively). For eggs, the
content of PFNA was about one thousandth of that in liver and
increased in a dose-dependent manner (insert in Figure 1).

This result is consistent with PFOA and PFOS accumulation
studies in environmental samples collected from New York
State, in which PFOS levels were higher in the liver of male
smallmouth bass (Micropterus dolomieu) than in females.36 It
has been suggested that different PFAA concentrations between
the sexes may originate from sex differences in the elimination
of PFCs, although this is yet to be elucidated. In adult rats, the
elimination of PFOA is down-regulated by testosterone in both
female and castrated male rats 37 and up-regulated by estradiol
in male rats.38 Similar PFNA results in mice have also been
reported by Kudo,24 in which they considered that these
differences may be due to organic anion transporter action in
the kidney as several transporter proteins are expressed
differentially in rats of both sexes. Some of these differences
develop during sexual maturation.39 In addition, PFOS transfer
from mother to egg has been suggested for seabirds, such as the
Common Guillemot (Uria aalge) from the Baltic Sea, whereby
PFOS is accumulated in the liver and is associated with very-
low-density lipoprotein during formation of the egg yolk
protein, and subsequently is transferred to the eggs as a protein-
PFOS complex.40 In accordance with this, a recent study of
PFOS in zebrafish showed that sex specific accumulation of
PFOS may result from higher excretion rates in females
through spawning rather than higher accumulation rates in
males.41 A similar study in humans suggested menstrual
bleeding, pregnancy, and lactation in women are the routes
for PFOS excretion, which contribute to their lower PFOS
body burden than men.42 Taken together with our study, it can
be concluded that male zebrafish had a higher concentration of
PFNA in the liver than did females, mainly relating to the
higher elimination rates of PFNA in females than in males.
Maternal transfer may be one possible route to eliminate PFNA
in females by laying large numbers of eggs during the
reproductive cycles (7 day intervals) from a single mating.
However, PFNA concentration in zebrafish liver did not reflect
real bioaccumulation because the body weight of fish was lower
at all exposure groups compared to the control group.

PFNA Effects on Morphology. To understand the adverse
effects of PFNA on zebrafish, classic end points were
investigated, including body weight, body length, and
hepatosomatic index (HSI) (n = 30 males and females,
respectively) (Figure 2). Compared to their respective control
groups, the body weight of both sexes significantly decreased in
a dose-dependent manner (p < 0.01) (part A of Figure 2).
However, a significant reduction in body length was only
observed in the high exposure group (1.0 mg/L PFNA) of both
males and females (p < 0.05 and 0.01, respectively), although it
too displayed a dose-dependent manner (part B of Figure 2).
Remarkably, HSI was reduced in the 0.01 mg/L PFNA
exposure group in males (p < 0.05), as well as in the 0.01 and
0.1 mg/L PFNA exposure groups in females (p < 0.01 and 0.05,
respectively) compared to their respective control groups.
However, no significant changes were observed in the high
exposure groups (1.0 mg/L PFNA) of either sex (part C of
Figure 2). Similar results for body weight and lengths have been
observed in previous reports on PFOS exposure in zebrafish,
carp (Cyprinus carpio), and swordtail fish (Xiphophorus
helleri).43−45 In our study, the decrease in HSI was observed
in low and intermediate PFNA concentration exposure groups,
which was consistent with the study of common carp treated
with PFOS for 14 days44 but contradicted the results on
swordtail fish exposed to PFOS for 21 days.45 These differences
in liver change following exposure to PFCs may originate from

Figure 1. PFNA content in liver and egg of zebrafish. *p < 0.05 and
**p < 0.01 indicate significant differences between the sexes.
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differences in species or exposure schemes. Based on these data,
it can be concluded that exposure to PFNA at the three test
concentrations had significant inhibitory effects on the body
growth of zebrafish, and the response to PFNA in body weight
was the more sensitive morphological end point.
TCHO and TG Levels in Liver. To investigate the adverse

effect of PFNA on liver lipid metabolism in zebrafish, total
cholesterol (TCHO) and triglycerides (TG) were measured
(Figure 3). Compared to the respective control groups, the
liver TCHO levels of both sexes increased significantly in the
0.1 and 1.0 mg/L exposure groups (part A of Figure 3).
However, the liver TG levels presented a wholly opposite trend
in males and females. Compared to the respective control
groups, the TG levels increased significantly in males but
decreased in females at all exposure doses (part B of Figure 3).
The increase in male liver TG following exposure to PFNA has
also been found in PFNA studies in rodents 46 and PFOA has
been reported to induce TG formation in the liver resulting in
decreased secretion of TG into circulation.47 For female TG
levels, however, a significant reduction was observed in the liver
compared to the control, which may indicate that PFNA
produced a decline in triglyceride synthesis or accelerated fatty
acid oxidation and inhibited uptake affinity for free fatty acids
from circulation to liver tissue. In addition, our study showed
that exposure to PFNA raised liver cholesterol levels. This
finding is in agreement with several occupational studies in
humans which found a positive association between PFOS and
PFOA and cholesterol.48 Our results suggest that zebrafish may
be a potentially suitable model for studying the effects of
PFAAs on cholesterol. Taken together, our research indicates
that the sex specific toxic effect of PFNA involves a disorder
metabolism of cholesterol and triglycerides in the zebrafish.

Transcriptional Expression of FABP Family in Zebra-
fish Liver. To further investigate the effect of PFNA on the
transcriptional expression level of FABPs, the mRNA levels of
11 FABP isoforms (1a, 1b, 2, 3, 6, 7a, 7b, 10a, 10b, 11a, and
11b) were measured by quantitative real-time PCR. The
transcriptional expressions of these FABPs were strikingly
different between the sexes. Overall, the pattern was increased
in males and decreased in females compared to their respective
control groups (Figure 4), except for FABP1b which showed a
significant decrease in the 0.01 (p < 0.05) and 1.0 mg/L (p <
0.01) exposure groups of males and significant increases in all
exposure groups of females (p < 0.05). For male livers, FABP7b
and 10b increased markedly in all exposure groups, FABP3 and
10a increased significantly in the 0.01 and 0.1 mg/L exposure
groups, FABP7a increased in the 0.1 and 1 mg/L exposure
groups, and the remaining isoforms (FABP1a, 2, 6, 11a, and
11b) increased in the 0.1 mg/L exposure group only. By
contrast, no marked differences were exhibited in females in the
low dose exposure group (0.01 mg/L). The FABP1a, 3, 10a,
10b, and 11a isoforms were significantly down-regulated in the
0.1 and 1.0 mg/L groups, FABP7a and b genes were only
down-regulated in the 0.1 mg/L group, and FABP6 and 11b
genes were only down-regulated in the 1.0 mg/L group. The
FABP2 levels were also reduced, but the differences were not
statistically significant.
To explore the different transcriptional patterns for FABPs

subtype, amino acid sequences of all FABPs were aligned using
CLUSTALW (Figure S1 of the Supporting Information), and a
bootstrap neighbor-joining phylogenetic tree was constructed
(Figure S2 of the Supporting Information). From the results,
FABP1b showed high sequence identity and similarity with
FABP1a, but the remarkably similar genes showed two
diametrically opposed expressions. This can be explained by

Figure 2. Body weight (A), body length (B), and HSI (C) in male and female zebrafish exposed to 0, 0.01, and 0.1 mg/L PFNA for 180 days. Results
show the means of the 30 individual fish, and the error bars indicate standard errors; *p < 0.05 and **p < 0.01 indicate significant differences
between the corresponding controls and exposure groups.

Figure 3. TCHO (A) and TG (B) levels in liver of zebrafish. *p < 0.05 and **p < 0.01 indicate significant differences between the corresponding
controls and exposure groups.
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phylogenetic analysis, in which FABP1a and FABP1b genes in
zebrafish are orthologs of mammalian FABP1 and most likely
arose by a whole-genome duplication event in the ray-finned
fish lineage. The distinct expression pattern observed in our
study suggests a division of function of these paralogous genes
in zebrafish liver.49

Transcription Levels of PPARs and C/EBPs. We next
explored the transcriptional levels of upstream genes of FABPs,
and the mRNA levels of peroxisome proliferator-activated
receptors (PPARs) and Ccaat-enhancer-binding proteins (C/
EBPs) were analyzed. The three PPAR subtypes, PPARα,
PPARg, and PPARd, have been identified in a wide range of

vertebrates including zebrafish.50 Interestingly, with the
exception of the PPARαa gene, an opposite expression trend
between the sexes was observed (part A of Figure 5). There was
significant inhibition of the PPARαa gene in the 1.0 mg/L
group for both males and females (p < 0.01). For the other
PPARs subtypes in males, both PPARαb and g increased
markedly in all PFNA exposure groups, while PPARda and db
increased markedly in the 0.01 and 0.1 mg/L exposure groups,
respectively. For females, however, PPARαb, g, and db were all
significantly down-regulated in the 0.1 and 1.0 mg/L exposure
groups, while PPARda increased significantly in the 0.01 mg/L
exposure group but decreased in the 1.0 mg/L exposure group
(p < 0.05). The mRNA levels of four C/EBPs (a, b, g, and d)
are shown in part B of Figure 5. Compared to the respective
control groups, significant increases were detected in the 0.01
and 0.1 mg/L exposure groups in males, but decreases were
observed in the 0.1 and 1.0 mg/L exposure groups in females.
Previous evidence shows that FABPs play an important role

in uptake, sequestering, and transport of fatty acids, and interact
with other transport and enzyme systems.32 Fluorochemicals
may, with a similar structure to fatty acids, successfully compete
with these natural ligands for FABP binding.25 The molecular
mechanisms for the induction of FABP genes by PFAAs in
mammals suppose that FABPs transport PFAAs to the nucleus
from the cytoplasm. Once inside the nucleus, FABPs interact
with and transfer PFAAs to nuclear receptors, such as PPARα
and PPARγ.28−30 The PFAAs are known to activate these
nuclear receptors, which, once activated, form heterodimers
with retinoic acid receptors (RAR) or retinoid X receptors
(RXR). These, in turn, bind to response elements such as
FABP genes and stimulate their transcription. Our results
showed an increase in the transcription of FABP genes in
males, which is consistent with the above hypothesis. In
females, however, the FABP genes were down-regulated in the
liver, which accords with previous research on PFDoA in female
zebrafish.51 This previous research showed that decreased
FABP expression in liver was associated with rapid increase in
ovarian lipid deposition, suggesting liver-mediated lipid trans-
port may occur during ovarian development.52 Female ovaries
require substantial lipid accumulation, especially fatty acids,
during their propagative stages.53 Transcriptional levels of
FABPs, PPARs, and C/EBPs as well as TG content in female
liver were reduced coincidentally in our study, which suggests
that a liver-ovary feedback loop may play an important role in
PFNA toxicity; however, the molecular mechanism requires
further study.
Although a similar transcriptional pattern occurred between

FABPs and PPARs and C/EBPs, which agrees with previous
reports that FABPs are regulated by a combination of PPARs
and C/EBPs,32 other transcriptional regulation mechanisms of
FABP genes was not excluded. For example, Berger et al. 54

suggested that the observed down-regulation of FABP5 mRNA
levels in the liver of mice was mediated via transforming growth
factor, beta 1.
Our results demonstrate that chronic PFNA exposure led to

a decrease in body weight, body length, and liver weight in both
sexes, although PFNA was less bioaccumulative in female livers
than in male livers. The liver TG levels increased in males but
decreased in females. Transcriptional levels of FABPs and their
upstream regulators of PPARs and C/EBPs were significantly
increased in males after chronic exposed to PFNA, whereas
opposite trends were observed in females. Because FABPs play
an important role in uptake, sequestering, and transport of fatty

Figure 4. Differential transcriptional expression of FABP family in
liver. *p < 0.05 and **p < 0.01 indicate significant differences between
the corresponding controls and exposure groups.
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acids, our results imply that the disruption of hepatic TG
metabolism by PFNA in different sexes of zebrafish was
possibly due to the opposite expression of FABPs. The FABPs
at least partially contributed the TG accumulation in zebrafish
liver exposed to PFNA. However, the exact molecular
mechanism requires further elucidation. The potential relation-
ships of PFNA accumulation and FABPs transcriptional
expression in zebrafish liver remain inconclusive because
transcriptional level pattern of L-FABPs were the opposite
between male and female zebrafish and the PFNA concen-
trations in the liver were elevated in both sexes although higher
in males than female.
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