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Abstract

Background: Perfluorododecanoic acid (PFDoA) is a perfluorinated carboxylic chemical (PFC) that has broad applications
and distribution in the environment. While many studies have focused on hepatotoxicity, immunotoxicity, and reproductive
toxicity of PFCAs, few have investigated renal toxicity.

Methodology/Principal Findings: Here, we used comparative proteomic and metabonomic technologies to provide a
global perspective on renal response to PFDoA. Male rats were exposed to 0, 0.05, 0.2, and 0.5 mg/kg/day of PFDoA for 110
days. After 2-D DIGE and MALDI TOF/TOF analysis, 79 differentially expressed proteins between the control and the PFDoA
treated rats (0.2 and 0.5 mg-dosed groups) were successfully identified. These proteins were mainly involved in amino acid
metabolism, the tricarboxylic acid cycle, gluconeogenesis, glycolysis, electron transport, and stress response. Nuclear
magnetic resonance-based metabonomic analysis showed an increase in pyruvate, lactate, acetate, choline, and a variety of
amino acids in the highest dose group. Furthermore, the profiles of free amino acids in the PFDoA treated groups were
investigated quantitatively by high-coverage quantitative iTRAQ-LC MS/MS, which showed levels of sarcosine, asparagine,
histidine, 1-methylhistidine, Ile, Leu, Val, Trp, Tyr, Phe, Cys, and Met increased markedly in the 0.5 mg dosed group, while
homocitrulline, a-aminoadipic acid, b-alanine, and cystathionine decreased.

Conclusion/Significance: These observations provide evidence that disorders in glucose and amino acid metabolism may
contribute to PFDoA nephrotoxicity. Additionally, a2u globulin may play an important role in protecting the kidneys from
PFDoA toxicity.
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Introduction

Perfluorinated carboxylic chemicals (PFCs) have been manu-

factured and used in various industrial and commercial products

over the past 50 years, including surfactants, lubricants, fire

fighting foams, and cosmetics [1]. Their high-energy carbon-

fluorine bonds enable them to resist hydrolysis, photolysis,

biodegradation, and metabolism, which increases their impact

on environmental and human health [2]. Recent biomonitoring

studies have revealed significant global distribution of PFCs in the

environment, wildlife, human beings [1,3–6], and even remote

areas such as the Arctic [7,8]. Perfluorooctanoic acid (PFOA, C8),

perfluorooctansulfonate (PFOS, C8), and perfluorododecanoic

acid (PFDoA, C12) are the most commonly detected PFCs [9] and

have thus received much attention from toxicologists and

environmental scientists.

The liver and kidney are the main organs for PFCs

bioaccumulation in animals [10]. In addition, the liver is the

primary target organ for PFCs toxicity [11,12], and the kidney is

the main elimination organ for PFCs [13]. Studies have shown

that exposure to PFCs increases the liver-to-body weight ratio,

hepatocellular hypertrophy, and peroxisome proliferation

[11,12,14] and induces adenoma in hepatocytes in laboratory

animals [15,16]; however, few studies have focused on the toxic

effects of PFCs on the kidney. While Kawashima et al. [17]

reported that PFOA induces peroxisomal b-oxidation in rat

kidney, Son et al. [18] observed no renal toxicity in mice orally

exposed to PFOA for 21 days. Our previous study found that

several kidney damage biomarkers (specifically, blood urea

nitrogen (BUN), creatinine, and BUN to creatinine ratio) increased

significantly in rat serum after chronic exposure to PFDoA for 110

days compared with the control group [19], which compelled our

further investigation of the potential renal toxicity of PFCs.

Two-dimensional difference gel electrophoresis (2-D DIGE) is

an efficient and accurate method for the separation of proteins in

complex mixtures and quantifies differential expression in treated
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and control samples [20]. This technology is an effective broad-

based screening tool for the analysis of environmental stress

responses in organisms [21]. Metabonomics is a systems biology

approach for determining the endogenous metabolic responses of

living systems using either 1H nuclear magnetic resonance (NMR)

spectroscopy or mass spectrometry in conjunction with statistical

pattern recognition [22].

We used 2-D DIGE followed by mass spectrometric analyses of

individual protein spots to better understand the potential renal

toxicity of PFDoA. NMR-based metabonomic analysis was

employed for lipid and aqueous kidney extracts to determine the

varied metabolite profiles from normal and PFDoA treated rats. In

addition, to accurately detect variations in the profiles of free

amino acids in kidneys exposed to PFDoA, we used iTRAQH–

LC–MS/MS with 42 internal standards of physiological amino

acids and amines for absolute quantification by isotope ratio

analysis. These data will help estimate an organism’s internal

reserves and the degree of metabolic disintegration under the

influence of xenobiotics and adaptive abilities of the target organs

and the organism as a whole. This research will not only explore

the underlying mechanisms of PFDoA nephrotoxicity but will also

provide a reference for assessing the risk of PFCs to human health.

Materials and Methods

Ethics Statement
This study was conducted in accordance with the Animal Ethics

Committee of Institute of Zoology, Chinese Academy of Sciences.

The institute does not issue a number or ID to any animal study,

but the ethical committee guides the animal use.

Experiment animals and design
Male Sprague-Dawley rats (230–240 g) were obtained from the

Weitong Lihua Experimentary Animal Central (Beijing, China).

Rats were housed in a light-controlled room under a 12-h light/

dark cycle with ad libitum access to food and water. The ambient

temperature in the animal room was 20–26uC and the relative

humidity was 40–60% under the care of the Laboratory Animal

Unit, Institute of Zoology, Chinese Academy of Sciences. After

one week of adaptation, the rats were separated into four groups of

ten animals. The PFDoA (CAS No. 307-55-1, 95% purity, Sigma-

Aldrich (St. Louis, MO)) was dissolved in 0.2% Tween-20. The

treatment rats were given doses of 0.05, 0.2, and 0.5 mg PFDoA/

kg body weight/day by oral gavage for 110 days. The control

animals were treated with 0.2% Tween-20 (vehicle) alone. At the

end of the experiment, six rats were selected randomly from each

group and were weighed and euthanized by decapitation. The

remaining four rats from each group were used for another study.

The left kidney of each euthanized rat was removed immediately,

washed with PBS, weighed, divided into four small aliquots, flash

frozen in liquid nitrogen, and stored at 280uC for further analysis.

Samples for the same analysis were from the same region of the

kidney.

Protein preparation and CyDye labeling
Total protein was extracted from the kidney using sample lysis

buffer (7 M urea, 2 M Thiourea, 30 mM Tris, 4% (w/v) CHAPS,

1 mM PMSF and 1% protease inhibitor cocktail (Sigma-Aldrich,

St. Louis, MO). Protein concentration was determined using a 2-D

Quant protein assay kit (GE Healthcare, Uppsala, Sweden).

We chose three groups (0, 0.2, and 0.5 mg/kg/day PFDoA) for

DIGE analysis based on previously observed gene expression

changes in the liver and clinical chemistry parameters [19]. Equal

amounts of protein sample from two randomly selected rats from

the same treatment group were pooled and purified using a 2-D

Clean-up kit (GE Healthcare) for subsequent DIGE analysis. Each

group yielded three pooled protein samples, and the pH values of

the desalted samples were adjusted to 8.5 with 100 mM sodium

hydroxide before labeling. Proteins were labeled with CyDye

Fluor minimal dyes (GE Healthcare) according to the manufac-

turer’s recommended protocols. The internal standard (IS) was

comprised of a pooled equal amount from all experimental

samples. A total of 50 mg of protein from the treated and control

groups were labeled with 400 pmol of either Cy3, Cy5, or Cy2

(Cy2 was used to label the IS). The labeled mixtures were

combined according to Table S1 and were then adjusted to 450 ml

with rehydration buffer (7 M urea, 2 M Thiourea, 2% CHAPS,

0.5% IPG buffer pH 4–7, and a trace of bromophenol blue) prior

to isoelectric focusing (IEF) and subsequent SDS-PAGE.

2-D DIGE and image analysis
The labeled mixtures were loaded onto Immobiline Dry Strips

(24 cm, linear pH gradient from pH 4–7, GE Healthcare). The

IPG strips were rehydrated overnight at 40 V for 5 h followed by

100 V for 6 h, and IEF was then conducted for a total of 78 kVhr

on a Multiphor II System (GE Healthcare). After completion of

the IEF program, the strips were equilibrated and then applied to

12.5% polyacrylamide gels. The SDS-PAGE was performed using

EttanTM Dalt six equipment (GE Healthcare) at 15uC. All

electrophoresis procedures were performed in the dark and run

in duplicate. Gels were scanned using a TyphoonTM Trio Series

Variable Mode Image (GE Healthcare) at 100 mm resolution,

followed by silver staining. The resulting gel images were analyzed

using DeCyder software 6.5 (GE Healthcare). The biological

variation analysis mode (BVA) revealed differences between the

PFDoA treated groups and the control across all gels. A Student’s

t-test was used to statistically analyze the data, and p,0.05 was

considered significant.

In-gel trypsin digestion and protein identification by
MALDI TOF/TOF

Visible differential protein spots were manually excised from the

silver-stained gels and placed into a 96-well microtiter plate. Gel

pieces were destained with 15 mM potassium ferricyanide and

50 mM sodium thiosulfate (1:1) for 20 min at room temperature

and digested overnight with 12.5 ng/ml trypsin in 20 mM

ammonium bicarbonate at 37uC. Peptides were then extracted

twice using 0.1% TFA in 50% ACN, dried, and eluted onto the

target with 0.7 ml of matrix solution (a-cyano-4-hydroxy-cinnamic

acid in 0.1% TFA, 50% ACN). Samples were allowed to air-dry

before being analyzed by an ABI 4700 MALDI-TOF/TOF

Proteomics Analyzer (Applied Biosystems, Framingham, MA,

USA). Positive ion mass spectra were recorded on a home-built

linear time-of-flight mass spectrometer using 39 kV of total

acceleration energy. Data from the PMF and MALDI-TOF

MS/MS were analyzed using MASCOT (Matrix Science,

London, UK) search software. The following parameters were

used in the search: Rattus, protein molecular mass range from 700

to 3,000 Da, trypsin digest with one missed cleavage, peptide

tolerance of 0.2, MS/MS tolerance of 0.8 Da, and possible

oxidation of methionine. Protein scores (based on combined MS

and MS/MS spectra) greater than 56 were considered statistically

significant (p,0.05). The individual MS/MS spectrum with the

statistically significant (confidence interval .95%) best ion score

(based on MS/MS spectra) was accepted. The identified proteins

were then matched to specific processes or functions by searching

Gene Ontology (http://www.geneontology.org/).

Biological Responses to Perfluorododecanoic Acid
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Quantitative PCR and western blot
Five differentially expressed proteins (Table S2) were further

examined to detect corresponding mRNA and protein levels in all

experimental groups (0, 0.05, 0.2, and 0.5 mg/kg/day PFDoA) by

quantitative PCR and western blot, respectively. The detailed

methods are given in the Text S1 and Table S2). Hypoxanthine

guanine phosphoribosyltransferase 1 (Hprt1) was chosen as an

internal control by GeNorm analysis [23]. Differences in mRNA

expression levels were calculated using the 22DDCt method [24].

For western blot analyses and quantitative PCR data, statistical

significance was determined using a one-way ANOVA followed by

the Duncan multiple range test (SPSS, Inc., Chicago, IL). Data are

presented as means with standard errors (mean6SE). A p-value of

,0.05 was considered statistically significant.

1H NMR spectroscopy of kidney tissues and data analysis
Kidney samples (,250 mg) from the control and PFDoA (0.05,

0.2, and 0.5 mg/kg/day) treatments were homogenized in 2 ml of

50% methanol and then centrifuged at 13,000 rpm for 10 min.

The supernatant was collected, dried under a stream of nitrogen,

and reconstituted in 550 ml of D2O. Prior to NMR analysis, 60 ml

of 0.1% sodium salt of 3-(trimethylsilyl)propionic-2,2,3,3,-d4 acid

(TSP) in D2O was added. Two milliliters of chloroform were

added to the pellets (control and 0.5 mg/kg/day PFDoA group),

and the extraction was followed by an additional centrifugation.

The lipophilic supernatants were removed, dried under a stream

of nitrogen, and reconstituted in 600 ml of chloroform-D

(containing 0.03% (v/v) tetramethylsilane) prior to NMR analysis.

The reconstituted solutions were transferred to 5-mm NMR tubes.

The NMR measurements were performed on a Varian INOVA

600 NMR spectrometer at 599.73 MHz, using a 5-mm triple

resonance probe. The 1D NOESY (RD-90u-t1-90u-tm-90u-
acquire) pulse sequence was used for water suppression in the

tissue extracts. For each sample, 64 transients were collected for a

total of 32 K data points. In the lipid extracts, a spectral width of

8,008.0 Hz was acquired with an acquisition time of 2.05 s. In the

aqueous extracts, a spectral width of 8,993.8 Hz and an

acquisition time of 1.82 s were used. Spectra were manually

phased, baseline corrected, and referenced to TMS or TSP at D
0.0. Total correlation spectroscopy (TOCSY) 2D NMR spectra

were also acquired for resonance assignment.

All spectra were manually rephased using the VNMR 6.1C

software package (Varian, Inc., Palo Alto, CA). For lipid extracts,

the spectra were divided into 135 0.04 ppm-wide segments for a

spectral window that ranged from 0.40 to 5.80 ppm. For aqueous

extracts, the spectra were reduced to 900 bins of equal width

(0.01 ppm) corresponding to the D 9.40–0.41 region. The segments

from D 5.1–4.7 ppm were removed to eliminate residual water

resonance. All remaining spectral segments were scaled to the total

integrated area of the spectra to reduce the effects of variation in

concentration [25]. The 1D 1H NMR spectral data sets for lipid and

aqueous extracts were imported into the SIMCA-P10.0 software

package (Version 10, Umetrics AB, Umea, Sweden) separately.

Partial least squares discriminant analysis (PLS-DA) with mean

centering was then applied for data processing.

Kidney free amino acid profile analyses
Kidney aqueous extracts (40 ml) were mixed with 10 ml of 10%

sulfosalicyclic acid using an Apricot TPS-24 automated liquid

handler and then centrifuged to precipitate the proteins. Labeling

buffer (40 ml) was added to the supernatant, and the resulting

mixture was incubated with iTRAQH Reagent 115 (5 ml) for

30 min at room temperature. A total of 5 ml of 1.2% hydroxyl-

amine solution was added to each sample. Samples were dried and

reconstituted with the iTRAQH Reagent 114-labeled Standard

Mix (32 ml). Amino acids were separated and detected by an API

3200TM LC-ESI MS/MS (Applied Biosystems, Framingham,

USA) in positive SRM mode. Chromatography was performed

using a C18 (15064.6 mm) column, with mobile phases of 0.1%

formic acid: 0.01% heptafluorobutyric acid (HFBA): H2O and

0.1% formic acid: 0.01% HFBA: ACN. Total analysis time was

25 min. The concentrations of 42 amino acids were determined by

comparing their ion intensity to their respective internal standards.

Principal components analysis-discriminant analysis (PCA-DA)

was used for data analysis with MarkerViewTM Software and

pareto scaling (Applied Biosystems, Framingham, USA). It is a

supervised multivariate statistical analysis method which combines

PCA with DA to facilitate the classification, similar to PLS-DA.

Results

2-D DIGE analysis for kidney proteins
Kidney proteins were separated effectively by 2-D DIGE

analysis (Figure S1). Analysis by DeCyder software demonstrated

that 129 and 227 spots were significantly altered in the 0.2 and

0.5 mg/kg/day PFDoA groups, respectively, compared to the

control rats (p,0.05), while 68 proteins (16 up-regulated and 52

down-regulated) were significantly altered in both treatments

(Figure 1). One hundred and six protein spots were excised from

the silver-stained gels and identified by MALDI-TOF-MS/MS

analysis. After a MASCOT database search, 79 different proteins

were identified successfully (Figure S1). Some spots were identified

as the same protein by TOF/TOF. This overlap might be due to

different isoforms or differences in posttranslational modifications.

Function categories of identified proteins
The 79 identified proteins are summarized and classified

according to their biological process or function (Table S3).

Twelve of the identified proteins were involved in amino acid

metabolism, including 3-mercaptopyruvate sulfurtransferase

(3Mpst), 3-phosphoglycerate dehydrogenase (Phgdh), and isova-

leryl coenzyme A dehydrogenase (Ivd), which plays an important

role in the metabolism of cysteine (Cys), L-serine, valine (Val),

Figure 1. Venn diagram analysis of the differentially expressed
proteins in two PFDoA treatment groups. The numbers of
differentially expressed spots (up- or down-regulated) in different
treatment groups are shown in the different segments (the number of
identified proteins is given in brackets). T1, 0.2 mg/kg/day PFDoA
group. T2, 0.5 mg/kg/day PFDoA group.
doi:10.1371/journal.pone.0020862.g001

Biological Responses to Perfluorododecanoic Acid
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leucine (Leu), and isoleucine (Ile). Six proteins were related to the

TCA cycle and pyruvate metabolism. As determined by their

protein expression levels, malate dehydrogenase 1 (Mdh1),

pyruvate carboxylase (PC), pyruvate dehydrogenase (lipoamide)

beta (Pdhb), and succinyl-CoA ligase, GDP-forming, subunit beta

(Suclg2) were all induced by PFDoA. Eight proteins involved in

gluconeogenesis and glycolysis were up-regulated in the kidneys of

rats exposed to 0.2 and 0.5 mg/kg/day of PFDoA. Three spots

(spot 290, 938, and 965) were identified as fructose-1,6-bipho-

sphatase 1, the key regulatory enzyme of gluconeogenesis. Eight

proteins associated with electron transport were all significantly

induced at the protein expression level by PFDoA, including

NADH dehydrogenase (ubiquinone) Fe-S protein 1 (Ndufs1), ATP

synthase (ATP5a1 and ATP5b), and ATPase. Three proteins, Cu-

Zn superoxide dismutase (Cu-Zn SOD), peroxiredoxin 3 (Prx3),

and thioredoxin reductase (TrxR), involved in the elimination of

radical oxygen species (ROS), were up-regulated in the 0.5 mg/

kg/day PFDoA treatment. Prohibitin (Phb) and tumor necrosis

factor type 1 receptor-associated protein (Trap), which are related

to stress response, were also up-regulated.

Quantitative PCR and western blot validation
To authenticate the 2-D DIGE proteomic results and verify

whether changes in protein expression correlated with transcript

level, five proteins related to metabolism (Fbp1, Ivd, Mdh1, Dlat,

and Pc) were selected and analyzed by western blot and quantitative

PCR. The fold changes in these proteins detected by 2-D DIGE in

the 0.2 and 0.5 mg/kg/day PFDoA groups are shown in Table 1.

The western blot results followed a similar pattern to the DIGE

results; except that the protein expression of Fbp1 in the 0.2 mg/

kg/day PFDoA group did not change significantly (p.0.05,

Figure 2). Similar regulation also occurred at the mRNA expression

level. However, the mRNA level of Dlat decreased significantly in

the 0.05 mg/kg/day dosage group (p,0.05) and did not change in

the other two treatments (Figure S2). The low mRNA-protein

correlations were also found by other researchers [26,27]. One of

the reasons is the existence of posttranscriptional mechanisms which

controls the protein translation rate [28] and the half-lives of specific

proteins or mRNAs [29]. These results suggest that PFDoA can

have diverse transcriptional regulation effects, but the protein

concentration changes of some enzymes were probably related to

the change in their transcript levels by PFDoA.

1H NMR spectroscopy of kidney tissue
Typical 1H NMR spectra of the aqueous and lipid extracts of

rats from the control and 0.5 mg/kg dosed group are shown in

Figures 3 and 4, respectively. The 1H chemical shifts and

assignments of the endogenous metabolites were performed

Table 1. Protein expression alteration of five selective proteins from 2-D DIGE analysis.

Protein name Fold changea (treated vs controls)

0.2 mg/kg/day 0.5 mg/kg/day

fructose-1,6- biphosphatase 1 (Fbp1) 1.12* 1.01

isovaleryl coenzyme A dehydrogenase (Ivd) 1.06 1.09**

malate dehydrogenase 1 (Mdh1) 1.04 1.08*

dihydrolipoamide S-acetyltransferase (Dlat) 1.08 1.14**

pyruvate carboxylase (Pc) 1.31** 1.32

aThe average fold changes were determined by Decyder 6.5.
*Significant difference from control, p,0.05.
**Significant difference from control, p,0.01. Positive ratios indicate increased expression of proteins in the PFDoA groups compared to control rats.
doi:10.1371/journal.pone.0020862.t001

Figure 2. Western blot analysis showing the effect of different PFDoA concentrations on protein expression levels of Ivd, Fbp1,
Mdh1, Pc, and Dlat in the kidneys of male rats. Intensities of the proteins were normalized to the corresponding Hprt level. Representative
western blots are shown in (A), and the results from densitometry analysis of the western blots are shown in (B). Each bar represents the mean 6 SE
of six samples per treatment. *p,0.05;**p,0.01.
doi:10.1371/journal.pone.0020862.g002

Biological Responses to Perfluorododecanoic Acid
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according to previous literature and 2D NMR spectra [30–33].

The 1H NMR spectra of the aqueous tissue extract reflected the

lower molecular weight metabolites present in the kidney

(Figure 3). These metabolites included amino acids, organic acids,

sugars, nucleotides, and their metabolites. The NMR spectra of

lipid extracts were dominated by lipid metabolites, which included

cholesterol esters, triglycerides, saturated and unsaturated fatty

acids, and phosphatides (Figure 4). It was possible to partially

assign resonances from mono- and polyunsaturated fatty acids

based on references [31].

1H NMR spectroscopic and pattern recognition analyses
of the kidney

Preprocessing of data, especially normalization of original data

is a crucial step in metabonomic studies. Total integral

normalization is the most widely used normalization method,

Figure 3. Typical 1H NMR spectra of the aliphatic region (0.8–5.4) and aromatic region (d 5.7–9.1) from aqueous extracts of renal
tissues of (A) control rats and (B) rats exposed to 0.5 mg/kg/d PFDoA. The vertical scales of the aromatic regions are enlarged 8 times. Key:
1. isoleucine; 2. leucine; 3. valine; 4. lactate; 5. alanine; 6. lysine; 7. arginine; 8. acetate; 9. glutamate; 10. glutamine; 11. methionine; 12. DMA; 13. DMG;
14. creatine; 15. ethanolamine; 16. choline; 17. phosphorylcholine; 18. betaine; 19. scyllo-inositol; 20. taurine; 21. glycine; 22. myo-inositol; 23. b-
glucose; 24. a-glucose; 25. uracil; 26. cytidine; 27. tyrosine; 28. phenylalanine; 29. histidine; 30. tryptophan; 31. xanthine; 32. hypoxanthine; 33. inosine;
34. formate; 35. nicotinamide.
doi:10.1371/journal.pone.0020862.g003

Figure 4. Typical 1H NMR spectra of the lipid extracts of renal tissues from (A) control rats and (B) rats exposed to 0.5 mg/kg/d
PFDoA. Chol, cholesterol; TG, triglyceride; PC, phosphatidylcholine; PE, phosphatidylethanolamine.
doi:10.1371/journal.pone.0020862.g004

Biological Responses to Perfluorododecanoic Acid
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and to some extent, is ‘the de facto standard of normalizing NMR

spectra’ [34]. This method, however, can fail when there are

abrupt changes in the concentrations of some specific groups of

metabolites or one specific metabolite, such as in the case of

diabetes. There are not strong or abrupt changes of some

metabolites in our data sets, thus we used scaled all remaining

spectral segments to the total integrated area of the spectra to

reduce the effects of variation in concentration [25]. The PLS-

DA model was used to compare 1H NMR spectra from renal

tissue extracts. A dose-dependent tendency for metabolic changes

was demonstrated in the scores plot of the NMR data from the

aqueous extracts (Figure 5). The line loading plot (Figure 5B)

demonstrated the changes in metabolites responsible for the

group separation in Figure 5A. Negative peaks represent

metabolites with higher concentrations in dosed groups than in

the control, whereas positive peaks represent metabolites with

higher concentrations in the control than in the dosed groups.

Consequently, most metabolite levels were elevated, whereas the

concentrations of phosphorylcholine, betaine, glycine, glucose,

and inosine decreased in the PFDoA exposed groups (Table 2).

There were also some variations in the lipid content of renal

tissues in treated rats, as demonstrated in the PLS-DA scores plot

of the lipid extract NMR data for the control and 0.5 mg/kg

dosed rats (Figure S3). The corresponding loading line plot

showed higher content of cholesterol ester, MUFA (except 18:2),

and phosphatidylcholine/phosphatidylethanolamine, and lower

content of TG in the 0.5 mg/kg dosed group than in the control

group.

Rat kidney pools of free amino acids in response to
different doses of PFDoA

We used iTRAQH–LC–MS/MS to measure how kidney amino

acids changed with PFDoA exposure. Results demonstrated that

PFDoA caused significant alterations in the kidney amino acid

profiles based on the analysis of the corresponding loading plot. A

marked increase in sarcosine, Asn, His, 1-methylhistidine, Ile, Leu,

Val, Trp, Tyr), Phe, Cys, and Met intensity, along with a decrease in

the signals of homocitrulline, a-aminoadipic acid, b-alanine, and

cystathionine, were responsible for the separation between the

0.5 mg dosed rats and the control group (Figure 6, Table S4).

Figure 5. Scores scatter plot and loading line plot of the PLS-DA analysis of aqueous renal tissues extracts from control and PFDoA
treated rats. (A) Scores scatter plot for PLS-DA analysis of aqueous renal tissue extracts from control rats (black box &) and rats exposed to
0.05 mg/kg/d (blue dot N), 0.2 mg/kg/d (purple diamond ¤) and 0.5 mg/kg/d (red triangle m) of PFDoA. (B) The loading line plot illustrates the
differentiating metabolites between the treated and control groups. Keys to the metabolites are the same as in Figure 4.
doi:10.1371/journal.pone.0020862.g005

Biological Responses to Perfluorododecanoic Acid
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Discussion

Perfluorinated carboxylic chemicals, such as PFOA and PFOS,

have been shown to induce hepatomegaly and renal hypertrophy

in male rats when administered orally at a dose of 5 mg/kg/day

for 28 days [35]. In our study, neither the absolute kidney weight

nor the relative kidney weight changed after exposure to PFDoA

for 110 days (data not shown), which is similar to results obtained

by Son et al.[18]. There was, however, a clear elevation in serum

creatine levels in the 0.2 and 0.5 mg/kg/day PFDoA groups [19],

which is a sign of renal insufficiency reflecting lower rates of

glomerular filtration [36]. To better understand potential renal

toxicity of PFDoA, 2-D DIGE, NMR-based metabonomics, and

LC/MS approaches were used in this study. After DIGE and

MALDI-MS analyses, 79 differentially expressed proteins were

identified between the kidneys of untreated and PFDoA treated

rats. These proteins were primarily involved in amino acid

metabolism, carbohydrate and energy metabolism, stress response,

and electron transport. In addition, the NMR- and LC/MS-based

metabolic profile analysis of the kidney samples revealed PFDoA

induced perturbation of glucose and amino acid metabolism in the

kidney.

At the highest dose of PFDoA exposure, the levels of eight of the

twelve differentially expressed proteins related to amino acid

metabolism increased significantly. These proteins included Ivd,

which converts isovaleryl-CoA to 3-methylcrotonyl-CoA as an

intermediate step in the Leu catabolic pathway [37]; Mpst, which

plays a central role in cysteine degradation to pyruvate [38];

glutamine transaminase K (Gtk), a freely reversible glutamine

(methionine) aromatic amino acid aminotransferase [39]; phenyl-

alanine hydroxylase (Pha), which plays a role in phenylalanine

conversion to tyrosine [40]; and L-arginine:glycine amidinotrans-

ferase (Agat), which is involved in arginine-related and creatine

metabolism [41]. Our NMR and LC/MS-based amino acid

profile results showed a marked increase in the levels of branched-

chain amino acids (Val, Leu, and Ile), aromatic amino acids (Phe,

Trp, and Tyr), and other amino acids, including Asn, His, Gln,

Cys, and Met in the 0.5 mg/kg/day PFDoA group, which

illustrates kidney dysfunction caused by PFDoA. These increased

proteins may contribute to the accelerated amino acid metabolism

observed in the kidney after PFDoA treatment. Many of these

elevated proteins are also enzymes involved in amino acid

biochemistry and hence their metabolic contribution to the

observed amino acid profile is an active role. Although catalyzed

by different enzymes, the various amino acids are converted to five

end products (succinate, oxaloacetate, fumarate, a-ketoglutarate,

and pyruvate), which then enter the TCA cycle pathway as

substrates.

In this study, increased expression levels of five proteins (Dlat,

Pdhb, Pc, Mdh1, and Suclg2) suggested an obvious increase in

the rate of the TCA cycle caused by PFDoA. We speculated that

this increase was partly caused by accelerated amino acid

metabolism, as well as the increase in the level of the amino

acid metabolites (lactate, succinate, and pyruvate) in the 0.5 mg/

kg/day PFDoA group. Glucose can also be converted into

pyruvate through the glycolysis pathway. As Enol and Khk are

the two enzymes involved in glycolysis, the up-regulation of these

enzymes in protein levels indicates that glycolysis was accelerated

in kidneys exposed to PFDoA. In addition, glucogenic amino

acids (Val, Leu, Ile, Met, His, Asn, and Cys), lactate, pyruvate,

and intermediate metabolites of the TCA cycle can also enter the

gluconeogenesis pathway as substrates. Both Pc and Mdh1 play

an important role in forming oxaloacetate from pyruvate, and

Fbp1 is the key enzyme of gluconeogenesis. The protein levels of

the five proteins (Pc, Mdh1, Fbp1, Eno1, and Khk) all increased

significantly in the 0.2 and 0.5 mg/kg/day PFDoA groups

compared to the control. This indicates that the enrichment of

amino acid metabolites and glycolysis accelerated the TCA cycle

in the rat kidney. The decrease of glucose in the kidney and

increase in intermediates in the TCA cycle and amino acid

metabolism also stimulated the gluconeogenesis pathway. In

addition, acidosis has been shown to increase renal gluconeo-

genesis, but impair hepatic gluconeogenesis [42]. Since PFDoA is

also a weak acid, it is tempting to speculate that the kidney may

be a major factor in accelerating gluconeogenesis upon PFDoA

exposure.

Table 2. Metabolite changes in renal tissue aqueous extracts
from PFDoA treated rats.

Keys Metabolites
Chemical shift
(multiplicity) Treated vs Control

1 isoleucine 0.95 (t), 1.02 (d) q

2 leucine 0.97 (d) q

3 valine 0.99 (d), 1.05 (d) q

4 lactate 1.33 (d), 4.12 (q) q

5 alanine 1.48(d) q

6 lysine 1.50(m), 1.73(m), 1.90(m) q

7 arginine 1.73(m), 1.90(m) q

8 acetate 1.92(s) q

9 glutamate 2.35(m), q

10 glutamine 2.42(m) q

11 methionine 2.14(s) q

12 dimethylamine 2.73(s) -

13 dimethylglycine 2.91(s) q

14 creatine 3.04(s) q

15 ethanolamine 3.15(t) -

16 choline 3.21(s) q

17 phosphorylcholine 3.23(s) Q

18 betaine 3.27(s), 3.91(s) Q

19 scyllo-inositol 3.35(s) -

20 taurine 3.43(t),3.26(t) q

21 glycine 3.56(s) Q

22 myo-inositol 4.07(m) q

23 b-glucose 4.64(d), 3.2-3.9(m) Q

24 a-glucose 5.23(d), 3.2-3.9(m) Q

25 uracil 7.54(d),5.81(d) -

26 cytidine 7.84(d), 6.07(d), 5.92(d) -

27 tyrosine 7.20(d), 6.90(d) q

28 phenylalanine 7.43(t), 7.39(t), 7.33(d) q

29 histidine 7.86(s), 7.09(s) q

30 tryptophan 7.74(m) -

31 xanthine 7.95(s) q

32 hypoxanthine 8.21(s), 8.19(s) q

33 inosine 8.35(s), 8.23(s), 6.10(d) Q

34 formate 8.46(s) -

35 nicotinamide 8.94(bs), 8.71(m), 8.25(m) q

Note: s, singlet; br, broad single; d, doublet; t, triplet; m, multiplet. The arrows
indicate the increase (q) or decrease (Q) in the levels of metabolites.
doi:10.1371/journal.pone.0020862.t002
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In aerobic organisms, various metabolic pathways such as

glycolysis, amino acid catabolism, and the TCA cycle are

accompanied by energy metabolism. Among the identified

proteins, seven were enzymes or subunits related to energy

metabolism. Up-regulated proteins such as NADH dehydroge-

nase, ATP synthase (ATP5a1 and ATP5b), and ATPase, which

play important roles in electron transport, showed a significant

induction of mitochondrial respiratory function in rat kidneys

exposed to PFDoA. Mitochondrial respiratory activity is always

accompanied by the production of ROS, which may cause

mitochondrial DNA damage or cell death [43], In this study, the

protein levels of antioxidant enzymes including Cu-Zn SOD,

Figure 6. Scores plot (A) and loading plot (B) of the PCA-DA analysis of kidney pools of free amino acids after exposure to 0.5 mg/
kg/d PFDoA. The full names of amino acids denoted refer to Table S4.
doi:10.1371/journal.pone.0020862.g006
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Prdx3, and TrxR all increased, which suggests an increased

production of ROS in the kidney. In addition, the classic ‘‘heat

shock’’ chaperones grp75 (Hspa9a) and Hsp60 (Hspd1), which are

associated with the mitochondria [44], were up-regulated. This

result is similar to that obtained in a previous study by Witzmann

et al. [45] These molecular chaperones can regulate protein

turnover and assembly and protect cells from harmful conditions,

including oxidative stress [46]. Coates et al. reported that

prohibitin could be induced by metabolic stress and may play a

role in regulating mitochondrial respiratory activity [47]. Some

researchers have also found that the expression of prohibitin

increased in apoptotic cells [48,49]. Therefore, the observed up-

regulation of these proteins in this study exhibited a preferential

effect of PFDoA on the mitochondria, which might be induced by

the increase in the metabolism of amino acids, carbohydrates, and

energy in rat kidneys exposed to PFDoA. Additionally, taurine is a

ß-amino acid and antioxidant agent naturally found in the kidney

that assists with protection [50,51]. The increase in taurine

concentration observed during metabolic analysis may be a

complementary reaction to PFDoA-induced oxidative damage in

the kidney. Moreover, elevated Myo-inositol, a renal medullary

osmolyte, is a marker of renal medullary injury [52].

Perfluorinated carboxylic chemicals are mainly accumulated in

the liver and kidneys of animals. Han et al. found that 70% of PFOA

are distributed in the cytosolic fraction of the rat kidney, and 40% of

PFOA in male kidney cytosol are protein bound [53]. Organic

anion transporters and some binding proteins, including fatty acid

binding protein and a2u globulin (A2Us), were presumed to play an

important role in the elimination and reabsorption of PFOA in rat

kidneys [54,55]. In addition, A2Us are well known male rat-specific

proteins and include the liver-form and kidney-form a2u-globulins

(A2UL and A2UK). They are capable of binding PFOA in vitro,

although the binding affinity is relatively weak [56]. The globulin

A2UL is synthesized exclusively in the liver of adult male rats [57],

secreted into the blood stream, and freely filtered by the glomerulus

[58]. Approximately 50% of the filtered proteins are excreted in

urine and form the major component of male rat urinary proteins.

The balance is reabsorbed by the epithelial cells of the proximal

tubule [59,60]. Reabsorbed A2UL can be degraded into amino

acids and undergo limited proteolysis to form A2UK. In the present

study, four protein spots were identified as a2u globulin PGCL1

(A2UL1, two spots), a2u globulin PGCL2 (A2UL2), and major

urinary protein 5 (MUP5). Levels of these proteins decreased

significantly in both 0.2 and 0.5 mg/kg/day PFDoA groups, the

maximum being 5.95-fold that of the control. Ciprofibrate, which is

a peroxisome proliferator, represses the amount of a2u-globulin

mRNA and protein in the male rat liver [61]. In our previous study,

PFDoA was also identified as a peroxisome proliferator [19,62]. The

decrease of A2Us in the kidney was possibly due to the repression of

A2U synthesis in the liver in response to PFDoA. The significant

decrease in A2Us could prevent the reabsorption of PFDoA in the

proximal tubule, and consequently slow accumulation of PFDoA in

rat kidneys.

Several limitations of ‘‘-omic’’ techniques as used in the present

study need to be noted. First, some low-abundance proteins, basic

proteins or insoluble membrane-associated proteins may not be

detected using 2-D DIGE analysis. Then, we examined protein

expression from the whole kidney, which could not identify the

localized changes such as those that may be confined to glomeruli

or tubules. Although this can give some information about renal

dysfunction from perturbed proteins and metabolites and reduce

the system errors as much as possible; however, this may affect the

magnitude of changes in individual intrarenal structures. In

addition, we examined renal protein expression at only one time-

point, which did not represent the entire dynamic process of PFCs

nephrotoxicity. Finally, due to the complexity of biological

processes in organisms, including feedforward, feedback and open

loop, the detail causality of the changes could not be clarified from

one or several ‘‘-omics’’ research in vivo. But what we could do was

to put forward a potential toxicity and the probable consequences

of effects as far as possible in this study, as well as yield new insights

into PFCs nephrotoxictity. Therefore, further studies including in

vitro and in vivo tests, detection of time-courses of effects and

changes in individual regions of kidneys would shed more light on

the definite proteins’ functional roles and the consequence of these

effects observed herein.

In summary, this paper reports the renal toxicity induced by

PFDoA as determined by proteomics and NMR- and LC/MS-

based metabonomics. The changes in the proteomic and

metabonomic profiles showed that PFDoA could cause kidney

damage, primarily perturbing kidney glucose and amino acid

metabolism and inducing mitochondrial disorders and oxidative

stress to the kidney. Furthermore, the decrease in A2Us possibly

prevents PFDoA-induced nephrotoxicity by repressing reabsorp-

tion of PFDoA in the proximal tubule and decelerating PFDoA

accumulation in the kidney. Our study provides information on

the broad and potential effect of PFDoA on the kidney based on

levels of proteins and metabolites.
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